Contents Supplement

Product Safety Precautions Page
Safery Precautions Z3
In-House Standard Test Methods Z4
Conversions
Temperature Z7
Linear Dimensions Z7
Force \& Torque Z7
Plating Thickness Z7
Weight Z7
Electrical Ratings
Rerating Current Z8
Inductive DC Loads; TV Ratings Z9
Operating Range \& Dual Ratings Z10
Lamps \& LEDs
Rerating Z11
Application Considerations Z12
Ballast Resistor Calculations \& Recommendations Z13
Processing Data
Processing Recommendation Guide Z15
Process Sealed Switches; Automated Cleaning Specifications Z16
Manual Solder - Profiles A, B Z16
Wave Solder for Through Hole - Profiles A, B Z17
Reflow Solder for SMT - Profiles A, B Z17
Standards \& Approvals
UL Recognition, cULus Recognition, CSA Certification Z18
VDE, ISO, IP Z22
Materials
Plastics \& Elements Z23
Terms \& Acronyms
Terms \& Acronyms Z24
Federal Supply Code Z30
Product Overview
Ultra-Miniature, Subminiature, Miniature, Specially, Illuminated, Standard \& High Capacity Z32
Index by Model Number Z34

NKK SWITCHES PRODUCT SAFETY PRECAUTIONS

Read all specifications，instructions and precautions to ensure proper use when selecting and using products． NKK Switches does not accept liability for any problems due to incorrect usage．

Abstract

Although NKK Switches＇products are designed and manufactured in accordance with the highest quality standards，it is nevertheless possible for switch failure to occur as a result of improper or unintended use that could result in performance degradation，short circuits，open circuit failure，and semiconductor failures．To prevent possible injury or property damage，it is recommended to incorporate circuits or devices to protect against the failure of products and the malfunction of equipment design．Confirm that NKK Switches＇products are wired and installed properly．

1．Voltages and Current

Check the specifications provided for the selected series and do not exceed the parameters for rated voltages and current recommendations．

Certain types of load may lead to large surge currents or reverse voltages．Select switches with the appropriate ratings to suit the type of load．Using an incorrect switch may result in abnormal wear，seizing，or contact failure．

Do not use switches under conditions that exceed their rated voltage or current specifications，as it may result in smoke， fire，or other malfunction．If there is a risk of exceeding rated voltage or current，precautions should be in place，such as appropriate protective circuits．

2．Usage Environment

Take account of the particular environment and conditions before selecting products．
Products do not feature sealed construction unless specified as waterproof．Sealed，or waterproof products are intended as panel sealed and cannot be used underwater or submersed in oil．Use in environments where the product may be subject to splashing liquids or dust may result in contact failure．

The use of waterproof caps is recommended where dirt，water，oil，or other substances may accumulate on the moving parts of panel surfaces．

Switches that are rarely operated should be actuated periodically to prevent potential problems，such as lubricants hard－ ening and contact degradation．

Do not use switches in an environment where flammable gases are present．Heat generated by switch operation may lead to ignition or explosion．

Switch durability（service life）may vary significantly，depending on operating conditions．Before use，confirm compat－ ibility of the switch selected for the application under actual usage conditions．Do not exceed the number of recommended operation cycles．Continuing to use switches with degraded performance may result in insulation failure，contact seizing， contact failure，damage，or burnout．

The resin used for products has been specially selected in accordance with the standards of NKK Switches．Do not use where there may be a risk of combustion unless appropriate fire prevention measures have been taken．

Safety Precautions

3. Soldering Temperature

Soldering times and temperatures should not exceed recommended ranges for each specific series.

Do not operate switches during or immediately after soldering (within 1 to 2 minutes), as it may lead to melting of resin components. Do not apply force to the terminals or lead wires.

4. External Force

Handle switches with care, as they may become damaged if impacted or dropped, whether loose or in packaging.
Operate switches by applying force in the correct direction.
Do not apply excessive force. Note that subjecting products to undue force may deform the terminals or cause contact failures or malfunctions. Do not subject the operating parts to impact - for example, with use of screwdrivers, wrenches, or other tools.

5. Storage

Avoid storing devices in hot or humid locations. Products should be stored at temperatures of about $25^{\circ} \mathrm{C}$ $\left(15^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}\right)$ and relative humidity of about $55 \%(25 \%-85 \%)$.

Avoid storing in locations where corrosive gases are present. Store products away from exposure to direct sunlight.
Products should be stored in original packaging to prevent sulfurization of terminals. Use products as soon as possible (within one year of delivery).

Avoid placing parts under heavy objects.

In-House Standard Test Methods

Ratings and performance figures provided in this catalog are based on NKK's In-House Standard Test Methods. Unless specifically stated otherwise, they are derived from tests performed within the standard atmospheric conditions described below. Note that these do not constitute guarantees for all standard atmospheric condition ranges.

Initial Values

- Ambient temperature: $15^{\circ} \mathrm{C}-35^{\circ} \mathrm{C}\left(59^{\circ} \mathrm{F}-95^{\circ} \mathrm{F}\right)$
- Relative humidity (RH): $25 \%-85 \%$
- Atmospheric pressure (kPa): 86-106

Ratings and performance figures are concluded from individual tests and do not authorize warrantees if the switches experience extended continuous operation at either extreme high or extreme low ends of the ranges. Optimal performance falls within the range of environmental tests. Contact factory if more details are needed.

For specifications not described in this catalog or for using NKK Switches' products in special environments, contact the factory.

Contact Resistance (Initial Values)

At a value determined by the individual specification, voltage declines and resistances are calculated.
The resistance value shall be at the maximum value of the individual specification.

Safety Precautions

Insulation Resistance (Initial Values)

A voltage of the individual specification shall be applied. The resistance value is at the maximum value of the individual specification. Devices shall be tested between terminals and between individual terminals and frame.

Dielectric Strength (Initial Values)

Voltage of the individual specification shall be applied. There shall be no abnormality such as short-circuit, dielectric breakdown, or leakage of current, etc. Devices shall be tested between terminals and between individual terminals and frame.

Vibration

Testing shall be executed with conditions that include a vibration frequency and amplitude outlined by the individual specification. There shall be no mechanical failure, no looseness of any part, no disassembled parts, with no electrical interruption.

Shock

Testing shall be executed with conditions to include a shock wave, shock wave time outlined by the individual specification. There shall be no mechanical failure, no looseness of any part, no disassembled parts, with no electrical interruption.

Corrosion

Testing shall be executed with the conditions outlined by the individual specification. There shall be no impairment or deterioration. Insulation resistance and dielectric strength must meet the requirement defined by the individual specification.

Moisture Proof

Testing shall be executed with conditions including temperature and relative humidity outlined by the individual specification. There shall be no failure of mechanical operation immediately after the test. Insulation resistance and dielectric strength must meet the requirement defined by the individual specification.

Heat Resistance (Operating)

Test parts are kept in a thermostatic oven at a temperature and condition outlined by the individual specification and shall make and break the electrical endurance test up to maximum number of operations. There shall be no failure of operation. Contact resistance, insulation resistance and dielectric strength must meet the requirement defined in the individual specification.

Heat Resistance (Storage)

Test parts are kept in the thermostatic oven at a temperature determined by the individual specification. There shall be no electrical or mechanical failure. Contact resistance, insulation resistance and dielectric strength must meet the requirement outlined by the individual specification.

Cold Proof (Operating)

Test parts shall make and break the operational test without load, in the thermostatic oven at a temperature defined by the individual specification. There shall be no electrical or mechanical failure. Contact resistance, insulation resistance and dielectric strength must meet the requirement outlined by the individual specification.

Safety Precautions

Cold Proof (Storage)

Test parts are kept in the thermostatic oven at a temperature determined by the individual specification. There shall be no electrical and mechanical failure. Contact resistance, insulation resistance and dielectric strength must meet the requirement outlined by the individual specification.

Electrical Endurance

Test parts shall make and break the operational test at voltage, current and load determined by the individual specification. There shall be no electrical or mechanical failure. Contact resistance, insulation resistance and dielectric strength must meet the requirement outlined by the individual specification.

Mechanical Endurance

Test parts shall make and break the operational test at a voltage and current determined by the individual specification without load. There shall be no electrical or mechanical failure. Contact resistance, insulation resistance and dielectric strength must meet the requirement outlined by the individual specification.

Usage Precautions

The operating temperature (humidity) ranges are guaranteed by evaluations based on the individual series specifications, and do not constitute warranties for extended continuous operation at either extreme high or low ends of the operating temperature range, or for constant operation at that temperature (or humidity).

During actual use, switches may be subjected to circumstances not tested in the laboratory. Before operating, confirm that actual usage will occur within operating environments and load conditions as outlined in recommended criteria.

Operation frequency and speed will affect switch performance. Switches may exhibit contact failure, seize, or sustain damage if operated too infrequently, very slowly or very quickly. Optimum performance may not be achieved for certain operating frequencies or operating speeds. Contact the factory if more details are needed.

TEMPERATURE

PLATING THICKNESS

Micron			1 micron	$=$		1 thousandth of 1 millimeter
One millionth of a meter;			1 micron $\div .0254$	$=$		39.37 millionths of an inch
a micrometer			Example: 3 microns $\div .0254$	$=$		118.11 millionths of an inch
WEIGHT						
1 gram	=	. 03527 ounce	1 ou		=	31.10348 grams
1 kilogram	=	35.27 ounces	1 ou		=	. 03110348 kilogram
1 kilogram	=	2.2 pounds	1 po		=	. 4539 kilogram

RERATING CURRENT FOR SWITCHES WITH 125V AC RATINGS

Generally, most switch applications can be classified into one of the below load categories. Switch capacities can be mathematically rerated when the application calls for a category or voltage other than the switch standard general specification ratings, meaning original current ratings at 125 V AC. NKK has not conducted life tests at these rerated voltages and currents so it is important to contact the factory in such cases. The candidate switch should be tested in the actual application in which it is intended to function.

Factors for Calculating Rerated Current at Various Loads

Factors for Calculating Rerated Current at Various Loads						
New Voltage Rating	Resistive Load Multiply by:	Inductive Load Multiply by:	Lamp Load Multiply by:	Motor Load Multiply by:	Capacitive Load Multiply by:	
125VAC	1	$0.50 \sim 0.66$ (PF 0.6)	$0.20 \sim 0.25$	0.33	0.25	
250VAC	$0.50 \sim 0.66$	$0.25 \sim 0.33$ (PF 0.6)	$0.10 \sim 0.16$	$0.16 \sim 0.22$	$0.12 \sim 0.16$	
12VDC	1	$0.75 \sim 1$	$0.20 \sim 0.25$	0.33	0.25	
30VDC	$0.50 \sim 1$	$0.25 \sim 0.50$	$0.10 \sim 0.25$	$0.16 \sim 0.33$	$0.12 \sim 0.25$	
48VDC	$0.25 \sim 0.33$	$0.20 \sim 0.25$	$0.05 \sim 0.08$	$0.08 \sim 0.11$	$0.06 \sim 0.08$	
$125 V D C$	0.05	$0.02 \sim 0.03$	N / A	N/A	N/A	

Sample Calculation for Model M2012SSIW01
with 6A @ 125VAC resistive rating.
To use at 48V DC inductive, multiply
$6 \mathrm{~A} \times 0.25=1.5 \mathrm{~A} @ 48 \mathrm{VDC}$

Sample Calculation for Model JWL22RCA

with 16A @ 125/250VAC resistive rating.
To use at 30V DC motor load, multiply
$16 \mathrm{~A} \times 0.33=5.28 \mathrm{~A} @ 30 \mathrm{VDC}$

Resistive Load

Resistive loads can be purely resistive or of the tungsten-heater load type. A resistive load that has no heating element is the easiest for a switch to handle, and the switch's rating is based on this type of load. A resistive load is one in which 100% of the load is composed of resistive devices. The power factor is high ($\mathrm{PF}=1$) and contact erosion is low. Consequently, the switch's electrical life can be anticipated with some certainty.

Lamp Load

When a switch closes on a resistive lamp load, the switch sees a short circuit because the cold resistance of the lamp filament is near zero. The surge current as the switch closes can be many times the steady state current. As the lamp filament heats up to operating temperature, the resistance of the filament increases and the current decreases to the lamp's steady state.

Motor

Motor loads present yet another brutal environment for switch contacts. Closing the switch contact on a motor start-up load causes very large current surges of about 3 to 8 times the running current. When the switch is opened and the current decreases, the magnetic field of the inductor collapses and an electromotive force is induced. The polarity of the induced voltage is such as to oppose any change in current flow. This induced voltage aids the source voltage in striking an arc and maintaining it as the contacts separate.

Inductive Load

Non-motor inductive loads, such as those seen in switching power supplies, have inrush currents that greatly exceed the normal operating currents of the equipment. This inrush current can easily reach 8 to 10 times the steady state current. As a switch on an inductive load is opened, the inductor, or transformer,
induces a counter option "voltage" in the circuit. This voltage opposes any change in the circuit current and can reach hundreds of volts. This extremely high voltage can restrike the arc as the switch contacts open resulting in severely eroded or welded contacts.

Capacitive

With such loads as DC power supplies, welding machines, and strobe charging units the inrush current is even more damaging than with inductive loads. To the switch a capacitive load appears as a dead short as the switch closes. In the first few milliseconds the inrush current can sometimes reach 100 times the steady state current of the circuit. Even worse for the switch, this inrush occurs before the contact bounce has subsided. This produces severe arcing and massive contact erosion. Often the contacts weld upon closure preventing the switch from ever opening. In an emergency the operator of the equipment would know he could not open the circuit.

INDUCTIVE LOADS

In AC circuits the voltage and current are varying in a sinusoidal pattern; both the voltage and current cross the zero reference 120 times per second for 60 Hz . Therefore, the chances of closing or opening a switch when the voltage and current are at their maximum in AC circuits is remote.

In DC circuits the voltage and current do not vary and are always at their rated levels. Compared to AC
circuits with the same voltage and current, DC circuits handle 1.414 times the power. Therefore, when opening or closing a switch on a DC load, the arc developed is more severe, more energetic, and lasts longer causing more contact erosion and a shorter switch life. A switch intended for a DC circuit should have its AC capacity rerated for DC. See previous page for rerating current.

DESIGN FOR INDUCTIVE DC LOAD MODELS S800D \& SW3800D

Bar magnets are placed at each end of high capacity switches, and their magnetic field opposes the field created by the arcing current, thereby extinguishing the arc and protecting the contacts.

Positive (+) must be connected to end terminals and negative (-) to common terminals.

TV RATINGS

The TV5 and TV8 ratings are tested and assigned by the Underwriters Laboratory. The switches are intended to be used as "Power ON" devices in equipment where a high tungsten inrush current is anticipated, such as tungstenfilament lamp loads or entertainment equipment like sound systems and monitors.

An example is the TV8 test which consists of an overload test and an endurance test. The overload test consists of a switch closing on a minimum inrush current of 163 amps with 50 consecutive operations at a rate of 10 cycles per minute. The test must be conducted without any failures. In the endurance test the current is reduced to 117 amps, and the same switch is subjected to another 25,000 operations.

The JWL is a product example that has been tested and meets the TV8 rating.

In addition to the electrical testing, the switch enclosure (housing) must comply with the requirements for classifying materials as UL94V-0. The insulation material must have arc-tracking characteristics with a minimum arcing time of 180 seconds when tested in accordance with the Standard

Test Methods for High-Voltage, Low-Current Arc Resistance of Solid Electrical Insulation.

The JWM and JWL switches are rugged, dependable, and well suited to high inrush circuits.

Typical Tungsten Inrush Curve
\qquad

OPERATING RANGE

Three contact materials are commonly used in NKK switches：gold，silver，and gold over silver．These materials give the options of low level，power level，plus combined power and low level ratings．

Low Level～0．4VA maximum＠28V AC or DC maximum

Gold plated contacts are recommended for dry circuits， which are defined as very low energy．In circuits where the voltage is below 28 volts DC and current is below 100 milliamps（dry circuits），no arc develops as the contacts open or close．So，the tarnish remains．Eventually without the arc， the contacts become so encrusted that the switch is unable to close the circuit due to the high contact resistance．

The solution to this is plating the contacts with gold， which does not tarnish，thus assuring the full electrical life of the switch．

Power Level～100mA to 10 amps＠125V AC

Silver contacts are recommended for electrical levels above 0.4 VA ．Although silver tarnishes，it is a good conductor and this electrical energy is sufficient to break through the tarnish to give reliable performance．The oxidation which coats the contact surfaces with a hard layer of insulative contamination is removed by arcing．In circuits where the voltage is above about 12 volts DC and the current above .5 amps ，an arc develops during opening or closing of the contacts．This arc keeps the oxidation cleaned off．

Power or Low Level

Gold over silver contacts are used in applications requiring both dry and power circuits．NKK＇s gold over silver contacts have dual ratings as further described below．

DUAL RATINGS

The dual rated option is suitable where identical switches are used in both a logic and a power level circuit within the same application．

Dual rated switches enable the user to install the same switch in both a logic level（dry circuit）and a power level circuit．However，once a code＂ A ＂rated contact switch has been used at a power level，it cannot then be used at a logic level．

There may be advantages to stocking only a single switch for use in both a logic level and a power level circuit．Our dual rated contact material option allows this
advantage．However，once a dual rated contact material switch has been used at a power level it cannot then be used at a logic level．

The gold over silver contact material provides a reliable，tarnish free，contact surface for logic level switching．When this same contact material switch is used in power level circuit，the gold plating is removed by contact arcing．If an attempt is then made to use this same switch in a logic level circuit（where no arcing occurs）．The low current condition cannot provide adequate contact wiping or cleaning．

RERATING

When a lamp is to be operated at a voltage other than the rated or design voltage, the rerated lamp specifications should be calculated to determine suitability for the user's application. The following formulas assist in predicting the rerated effect on luminous intensity, endurance and current. Results are most reliable for applied voltages close to the rated voltage.

Rerated MSCP $=$ Rated MSCP $\times\left[\frac{\text { Applied Voltage }}{\text { Rated Voltage }}\right]$
Rerated Life $=$ Rated Life x

Rated Voltage
Rerated Current $=$ Rated Current $\times\left[\frac{\text { Applied Voltage }}{\text { Rated Voltage }}\right]$

For your convenience, the graph below illustrates the way current, candlepower, and life performance vary with percent changes in applied voltage. The graphed values are typical for miniature and subminiature lamps with the average life based on rated voltages at 60 cycles $A C$, in room temperature, and under static conditions.

Source: General Instrument Chicago Miniature Brand Incandescent and Neon Lamps, Catalog No. 8400-Rev 1, (Chicago, Illinois: General Instrument Corporation), page 3.

APPLICATION CONSIDERATIONS

LEDs

Light emitting diodes (LEDs) operate at relatively low current and DC voltage levels and have comparatively unlimited service life. Their characteristics do not change significantly with age, and they are not easily damaged by shock or vibration. A variety of NKK's switches and indicators are offered with red,
green, yellow, amber, blue, white, or bicolor (red/ green) LEDs.

Most of the LEDs used in our products require a ballast resistor connected in series with the LED. In addition, we offer 5-, 12-, and 24-volt lamps with internal resistors in the $Y B$ series.

Incandescent Lamps

Lamp life is determined in a laboratory environment where conditions are near perfect. Actual applications, unlike the test environment, involve many factors which can greatly affect the values listed in lamp specifications. Of all the operating characteristics, lamp life is the least predictable. The lamp filament must deteriorate to produce illumination, and actual life is a function of this unpredictable rate of deterioration. Thus, exact life performance cannot be
determined for any incandescent lamp under any set of conditions.

Lamps perform at their maximum when used at their rated AC voltages or below. There are many known conditions or factors that affect lamp life. Using the lamp in abusive environments such as high ambient temperatures, high shock and/or vibration, constant illumination, and DC voltage accelerates deterioration of the tungsten filament.

Neon Lamps

Neon lamps are low-current, long-life sources limited by the high ionization voltage of neon (≥ 80 volts) for use in line voltage circuits. A series resistor is required in all neon lamps for current limiting. Larger lamps often include an integral resistor sized for a specific voltage.

Neon lamps glow with a low intensity, amber light. Bright light and vivid colors are not obtainable
with neon lamps. Their typical 1.5 mA current drain, better than 25,000-hour service life, and good resistance to shock and vibration make them an excellent alternative in many line voltage applications. For best visibility they should be used with clear lenses and diffusers. Other suitable colors are red, orange, yellow, or white.

LED \& Lamp Part Numbers for Each Series

PN	Type	Series	PN	Type	Series	PN	Type	Series
AT070	LED	EB M MB24	AT618	LED	EB M MB24	AT630	LED	HB
AT602	Incand.	LW MLW	AT621	LED	YB	AT631	LED	KB LB YB YB2
AT602N	Neon	LW MLW	AT622	LED	MLW	AT632	LED	KB LB YB YB2
AT607	Incand.	LB	AT624	LED	HB	AT633	LED	HB
AT607N	Neon	LB	AT625	LED	KB LB YB YB2	AT634	LED	KB YB YB2
AT611	Incand.	KB YB	AT627	LED	LB	AT635	LED	KB LB
AT615	Neon	KB	AT628	LED	YB YB2	AT636	LED	KB YB YB2
AT617	LED	EB M MB24	AT629	LED	HB			

Ballast Resistors

BALLAST RESISTOR CALCULATIONS \& RECOMMENDATIONS

If the source voltage is greater than the rated voltage of a lamp or LED, a ballast resistor must be connected in series with the lamp. The following circuit diagram and formula will assist in calculating the value of the required ballast resistor.

$R=\frac{E-V_{F}}{I_{F}}$
Where: $\mathrm{R}=$ Resistor Value (Ohms)
E = Source Voltage (V)
$V_{F}=$ Forward Voltage (V)
$I_{F}=$ Forward Current (A)

Watt recommendations provide a margin to reduce heat rise and increase life.

FORWARD		SOURCE VOLTAGE																			
VOLTAGE	CURRENT	E																			
V_{F}	$\mathrm{I}_{\text {F }}$	5 V		6 V		9 V		12V		14V		16V		18V		22V		24V		28 V	
V	mA	Ω	W																		
1.65	25	130	1/4	180	1/2	300	1/2	430	1	510	1	560	1	680	2	820	2	910	2	1.1K	2
1.70	30	110	1/2	150	1/2	240	1	360	1	430	1	470	2	560	2	680	2	750	2	910	3
1.75	40	82	1/2	110	1/2	180	1	270	1	300	2	360	2	430	2	510	3	560	3	680	3
1.77	20	160	1/4	220	1/4	360	1/2	510	1/2	620	3/4	750	3/4	820	1	1.0K	1	1.1K	1	1.3K	1.5
1.80	48	68	1/2	91	1/2	150	1	220	2	240	2	300	2	330	2	430	3	470	3	560	3
1.85	20	160	1/4	220	1/4	360	1/2	510	1	620	1	750	1	820	1	1.0K	1	1.2 K	2	1.5K	2
1.90	8	390	1/8	510	1/8	910	1/4	1.2K	1/4	1.5K	1/4	1.8 K	1/4	2.0K	1/2	2.4K	1/2	2.7K	1/2	3.3K	1/2
	15	220	1/8	270	1/4	470	1/2	680	1/2	820	1/2	1.0K	1	1.1K	1	1.5K	1	1.5K	1	1.8 K	2
	16	200	1/4	220	1/4	430	1/2	620	1/2	750	1	910	1	1.0K	1	1.2 K	1	1.3 K	1	1.6K	1
	20	150	1/4	200	1/4	360	1/2	510	1/2	620	3/4	750	1	820	1	1.0K	1	1.1K	1	1.3K	2
	26	120	1/4	160	1/2	300	1/2	390	1	470	1	560	1	620	1	820	2	910	2	1.1K	2
1.95	15	220	1/8	270	1/4	470	1/2	680	1/2	820	1/2	1.0K	1	1.1K	1	1.5K	1	1.5K	1	1.8 K	2
	20	150	1/4	200	1/4	360	1/2	510	1/2	620	3/4	680	3/4	820	1	1.0K	1	1.1K	1	1.3K	2
	24	130	1/4	160	1/2	300	1/2	430	1	510	1	560	1	680	2	820	2	910	2	1.1K	2
1.96	16	200	1/4	240	1/4	430	1/2	620	1/2	750	1/2	910	1	1.0K	1	1.3K	1	1.3K	1	1.6K	1
2.00	15	200	1/8	270	1/4	470	1/2	680	1/2	820	1	910	1	1.1K	1	1.3K	1	1.5K	1	1.8 K	1
	20	150	1/4	200	1/4	360	1/2	510	1	620	1	750	1	820	1	1.0K	1	1.1K	2	1.3K	2
	24	120	1/4	160	1/2	300	1/2	430	1	510	1	560	1	680	2	820	2	910	2	1.1K	2
	25	120	1/4	160	1/2	270	1/2	390	1	470	1	560	1	620	2	820	2	910	2	1.1K	2
	26	120	1/4	160	1/2	270	1/2	390	1	470	1	560	1	620	1	820	2	910	2	1.0K	2
	48	62	1/2	82	1/2	150	1	200	1	240	1	300	2	330	2	430	3	470	3	560	3
2.07	16	180	1/8	240	1/4	430	1/2	620	1/2	750	1/2	910	3/4	1.0K	3/4	1.3K	1	1.3K	1	1.6K	1
2.10	15	200	1/8	270	1/4	470	1/2	680	1/2	820	1/2	1K	1	1.1K	1	1.3 K	1	1.5K	1	1.8 K	1
	20	150	1/4	200	1/4	360	1/2	510	1	620	1	680	1	820	1	1.0K	1	1.1K	1	1.3K	1
	24	120	1/4	160	1/2	300	1/2	430	1	510	1	560	1	680	2	820	2	910	2	1.1K	2
	25	120	1/4	160	1/2	270	1/2	390	1	470	1	560	1	620	2	820	2	910	2	1.1K	2
	30	100	1/4	130	1/2	240	1	330	1	390	1	470	2	510	2	680	2	750	2	910	2
	40	75	1/2	100	1/2	180	1	270	1.5	300	1.5	360	1.5	430	2	510	2	560	3	680	3
	45	68	1/2	91	1/2	160	1	220	2	270	2	330	2	360	2	430	3	510	3	620	3
2.15	16	180	1/8	240	1/4	430	1/2	620	1/2	750	1/2	910	3/4	1.1K	3/4	1.2K	1	1.3 K	1	1.6 K	1
	20	150	1/4	200	1/4	360	1/2	510	1	620	1	680	1	820	1	1.0K	1	1.1K	1	1.3K	1
2.16	16	180	1/8	240	1/4	430	1/2	620	1/2	750	1/2	910	3/4	1.0K	3/4	1.2K	1	1.3K	1	1.6K	1

Ballast Resistors

Processing Data

PROCESSING RECOMMENDATION GUIDE

Series \& Type	PCB		SMT		Cleaning	
	Wave Solder	Manual Solder	IR Reflow	Vapor Phase	Auto- matic	Manual
A Rockers	x	x			x	
A Toggles	x	x			x	
AB Pushbuttons	x	x			x	

AS Slides	x	x				x
B Illuminated Toggles	x	x			x	
B Toggles	x	x			x	

BB Pushbuttons	x	x			x	
CB Tactiles	x	x			x	
CB3 SMT Tactiles		x	x		x	

Processing Data

PROCESS SEALED SWITCHES

NKK, a pioneer in the development of process sealed switches , is ahead of its time as a manufacturer. These process sealed switches are increasingly in demand because of the advancements in automated PC board processing. NKK's expansive family of process compatible devices includes toggles, rockers, pushbuttons, tactiles, rotaries, keylocks and slides in a variety of sizes.

Over 50 years of quality design experience produced the first process sealed switches to satisfy the process requirements of PC
board soldering and cleaning techniques. As the cutaway drawings on our Distinctive Characteristics pages illustrate, our process sealed switches incorporate all the features necessary to accomplish their process compatibility: epoxy sealed terminals, heat resistant resins, interior rubber o-rings, seals, and sleeves, plus ultrasonic welding. The following data has been developed from a comprehensive study of test data, technical literature, and industry practice.

Automated Cleaning Specifications

Temperature Stabilization

To minimize the thermal shock, switches should be allowed to cool to $38^{\circ} \mathrm{C}$ or to the temperature of the hand or machine cleaning.
Flux
NKK Switches recommends a no-clean (low residue) flux that can be either left on the board or cleaned with a mild organic solvent. A second choice is a synthetic flux that can be effectively removed with an alcohol-based solvent. A water soluble flux is not recommended because of the corrosive nature of the flux residue. The relatively high temperature and energetic cleaning methods needed to ensure complete removal of all flux residues could also be hazardous to the switch.

Flux Removal

Cleaning should take place at a slightly elevated room temperature between $38^{\circ} \mathrm{C}$ and $52^{\circ} \mathrm{C}$.
Spray pressure should not exceed 25psi. See table of Flux Removal Conditions below to determine recommended depth of submersion, time and temperature.
Drying
Drying time should be extended to a one-hour bake at $52^{\circ} \mathrm{C}$ maximum. This step will eliminate any condensation.

Flux Removal Conditions

Manual Solder Profile	Profile A High Temperature	Profile B Low Temperature
Solder Iron Tip Temperature	$390^{\circ} \mathrm{C}$	$350^{\circ} \mathrm{C}$
Time on Terminal	4 seconds	3 seconds
Cycles	2	1

Notes:

Profiles A and B are for lead-free.
Do not exceed these specifications.

Wave Solder Profiles for Through Hole

Reflow Solder Profiles for SMT

\(\left.$$
\begin{array}{l|c|c|c}\hline \text { Reflow Solder Profile } & \begin{array}{c}\text { Profile A } \\
\text { High Temperature }\end{array} & \begin{array}{c}\text { Profile B } \\
\text { Low Temperature }\end{array}
$$

\hline Preheat Temperature \& \mathrm{T} 1 \& 180^{\circ} \mathrm{C} \sim 200^{\circ} \mathrm{C} \& 150^{\circ} \mathrm{C} \sim 170^{\circ} \mathrm{C}\end{array}\right]\)| 120 seconds |
| :--- |

Notes:

The Reflow Solder profile above describes the printed circuit board (PCB) surface temperature. Since the PCB surface temperature and the switch surface temperature will vary depending on the height of the switch, the PCB material, and PCB thickness, ensure that the
switch surface temperature does not exceed $250^{\circ} \mathrm{C}$ for high temperature (column A), or $240^{\circ} \mathrm{C}$ for low temperature (column B). Contact the factory if your conditions are more severe than the above specifications.

Standards \& Approvals

Underwriters

Laboratories Inc.
Find certifications at www.ul.com
File No. E44145
Class Description: Switches, Special Use - Component. Switches are supplied without marking unless specified. See General Specifications page of each series for ordering instructions.

Underwriters Laboratories Inc.

Find certifications at www.ul.com
File No. E44145
Class Description:
Switches, Special Use - Certified for Canada. Switches are supplied without marking unless specified. See General Specifications page of each series for ordering instructions.

Canadian

Standards Association
Online at
www.csa-international.org
File No. 023535_0_000
Class No. 6241-10; Class Description:
C22.2 No. 55: Switches-Snap-Special Use.
Switches are supplied without marking unless specified. See General Specifications page of each series for ordering instructions.

UL, cULus recognized \& CSA certified only when ordered with marking on the switch.

See details regarding specific options in each switch section.

Basic NKK Part No.	Rating Amps@Volts	UL	cULus	CSA
$\begin{aligned} & \text { CWSA } \\ & \text { CWSB } \end{aligned}$	6A @ 250V AC 6 A @ 250 V AC			
CWSB (illum.) CWSC (illum.) CWT12	9A @ 125 V AC 9A @ 125V AC 6A @ 250V AC 6A @ 125V AC 3A @ 250V AC		-	-
$\begin{aligned} & \text { EB2011 } \\ & \text { EB2065 } \end{aligned}$	3A @ 125V AC	-	-	-
$\begin{aligned} & \text { EB2061 } \\ & \text { EB2085 } \end{aligned}$	$3 \mathrm{~A} @ 125 \mathrm{~V}$ AC	-		
FB15ANEP2	0.5A @ 125V AC	-	-	
$\begin{aligned} & \mathrm{HB} 15 \\ & \mathrm{HB} 16 \end{aligned}$	0.1A @ 30V AC/DC	-	-	
HS16-1 HS16-2 HS16-3 HS16-4 HS16-5 HS16-6	$\begin{gathered} 12 \mathrm{~A} @ 125 \mathrm{~V} \text { AC } \\ 6 \mathrm{~A} @ 250 \mathrm{~V} A C \end{gathered}$			
$\begin{aligned} & \text { JPL } \\ & \text { JPM } \end{aligned}$	$\begin{aligned} & \text { TV8, 125V AC } \\ & \text { TV5, 125V AC } \end{aligned}$	\bullet		
JWL1 1 JWL12 JWL21 JWL22	$\begin{gathered} \text { TV8, } \\ \text { 16A @ 250V AC } \\ \text { 5A @ 72V DC (UL) } \end{gathered}$	\bullet	$\stackrel{-}{\bullet}$	$\stackrel{-}{\bullet}$
JWMI 1 JWM12 JWM21 JWM22	$\begin{gathered} \text { TV5, } \\ \text { 10A @ 250V AC } \\ \text { 10A @ 30V DC } \end{gathered}$	\bullet	$\stackrel{-}{\bullet}$	$\stackrel{\bullet}{\bullet}$
JWLW1 1 JWLW12 JWLW21 JWLW22	16A @ 250V AC	$\stackrel{\square}{\bullet}$		
JWMW11 JWMW12 JWMW21 JWMW22	$\begin{aligned} & \text { 10A @ 250V AC } \\ & 10 \mathrm{~A} @ 30 \mathrm{~V} D \mathrm{C} \end{aligned}$	\bullet		$\stackrel{-}{\bullet}$
$\begin{aligned} & \text { JWS11 } \\ & \text { JWS21 } \end{aligned}$	6A @ 125/250V AC (illum. \& nonilluminated)	\bullet		

Basic NKK Part No.	Rating Amps@ Volts	UL	cUlus	CSA
KB15 KB16 KB25 KB26	$\begin{gathered} \text { 1A @ } 125 / 250 \mathrm{~V} \text { AC } \\ 1 \mathrm{~A} @ 30 \mathrm{~V} D \\ 0.4 \mathrm{VA} @ 28 \mathrm{~V} \text { DC } \end{gathered}$	\bullet		$\stackrel{-}{\bullet}$
LB15 LB16 LB25 LB26	$\begin{gathered} 3 A @ 125 / 250 V \text { AC } \\ 0.4 \mathrm{VA} @ 28 \mathrm{~V} \text { DC } \end{gathered}$			
LP0125	$\begin{gathered} 3 \mathrm{~A} @ 125 \mathrm{~V} \text { AC } \\ 3 \mathrm{~A} @ 250 \mathrm{AC} \\ 3 \mathrm{~A} @ 30 \mathrm{~V} D C \end{gathered}$	\bullet		
LW3122 LW3123 LW3125 LW3128 LW3129	$\begin{gathered} 10 \mathrm{~A} @ 125 \mathrm{~V} \text { AC } \\ 6 \mathrm{~A} @ 250 \mathrm{~V} \text { AC } \end{gathered}$			
Toggles M2011 M2012 M2013 M2015 M2018 M2019 M2021 M2022 M2023 M2024 M2025 M2026 M2027 M2028 M2029	6A @ 125V AC 3A @ 250V AC $0.4 \mathrm{VA} @ 28 \mathrm{~V}$ DC	-		\bullet
M2032 M2033 M2035 M2038 M2039 M2042 M2043 M2044 M2045 M2046	6A @ 125V AC 3A @ 250V AC 0.4 VA @ 28 V DC	-		$\stackrel{-}{\bullet}$
$\begin{aligned} & \text { M2047 } \\ & \text { M2048 } \\ & \text { M2049 } \end{aligned}$	$\begin{gathered} \text { 6A @ 125V AC } \\ 3 \mathrm{~A} @ 250 \mathrm{VAC} \\ 0.4 \mathrm{VA} @ 28 \mathrm{~V} \text { DC } \end{gathered}$	\bullet	$\stackrel{\rightharpoonup}{\bullet}$	$\stackrel{\rightharpoonup}{\bullet}$

Standards \& Approvals

See details regarding specific options in each switch section.
$\left.\begin{array}{l|c|c|c|c}\hline \begin{array}{c}\text { Basic NKK } \\ \text { Part No. }\end{array} & \begin{array}{c}\text { Rating } \\ \text { Amps @Volts }\end{array} & \text { UL } & \text { cULus } & \text { CSA } \\ \hline \text { Rockers } & \text { 6A @ 125V AC } & \bullet & \bullet & \bullet \\ \hline \text { 32011 } & \text { 3A @ 250V AC }\end{array}\right)$

Basic NKK Part No.	Rating Amps@Volts	UL	cUlus	CSA
$\begin{aligned} & \text { M2T22 } \\ & \text { M2T23 } \\ & \text { M2T25 } \\ & \text { M2T28 } \\ & \text { M2T29 } \end{aligned}$	6A @ 125V AC 3A @ 250V AC 4A @ 30V DC			
$\begin{aligned} & \text { M2T22 } \\ & \text { M2T23 } \\ & \text { M2T25 } \\ & \text { M2T28 } \\ & \text { M2T29 } \end{aligned}$	0.4VA @ 28V DC			
MB2011 MB2065 MB2061 MB2085 MB2181 MB2185	6A @ 125V AC 3A @ 250V AC 0.4VA @ 28V DC			
MB2411 MB2461	$\begin{gathered} 3 \mathrm{~A} @ 125 \mathrm{~V} \text { AC } \\ 0.4 \mathrm{VA} @ 28 \mathrm{~V} \text { DC } \end{gathered}$	\bullet		
$\begin{aligned} & \text { MB2511 } \\ & \text { MB2521 } \end{aligned}$	$\begin{gathered} 3 \mathrm{~A} @ 125 \mathrm{~V} \text { AC } \\ 0.4 \mathrm{VA} @ 28 \mathrm{~V} \text { DC } \end{gathered}$	\bullet		
MLW3012 MLW3013 MLW3015 MLW3018 MLW3019	$\begin{aligned} & 5 \mathrm{~A} @ 125 \mathrm{~V} \text { AC } \\ & 3 \mathrm{~A} @ 250 \mathrm{~V} \end{aligned}$			
MLW3022 MLW3023 MLW3025 MLW3028 MLW3029 MLW3020	$\begin{aligned} & 5 \mathrm{~A} @ 125 \mathrm{~V} \text { AC } \\ & 3 \mathrm{~A} @ 250 \mathrm{~V} \text { AC } \end{aligned}$			
MRT22 MRT23	$10 \mathrm{~A} @ 125 \mathrm{~V}$ AC 5A @ 125V AC	\bullet		
MS12 MS13 MS22 MS23	6A @ 125V AC 3A @ 250V AC (nonilluminated)	$\stackrel{\square}{\bullet}$	\bullet	
MS12 MS13 MS20 MS22 MS23	$\begin{gathered} \text { 6A @ 125V AC } \\ 3 \mathrm{~A} @ 250 \mathrm{~V} \text { AC } \\ 0.4 \mathrm{VA} @ 28 \mathrm{~V} \text { DC } \\ \text { (nonilluminated) } \end{gathered}$			$\stackrel{\bullet}{\bullet}$
$\begin{aligned} & \text { P2011 } \\ & \text { P2012 } \\ & \text { P2013 } \\ & \text { P2021 } \\ & \text { P2022 } \\ & \text { P2023 } \end{aligned}$	$10 \mathrm{~A} @ 125 \mathrm{~V}$ AC 6A @ 250V AC	\bullet		
$\begin{aligned} & \text { S1A } \\ & \text { S2A } \\ & \text { S3A } \end{aligned}$	10A @ 125V AC 5A @ 250V AC	-	-	
$\begin{aligned} & \text { S1A } \\ & \text { S2A } \\ & \text { S3A } \end{aligned}$	$\begin{gathered} 15 \mathrm{~A} @ 125 \mathrm{~V} \text { AC } \\ \text { 6A @ } 250 \mathrm{~V} \text { AC } \end{gathered}$			$\stackrel{\rightharpoonup}{\bullet}$

Only Synchronous Toggles \& Rockers with Solder Lug or Straight PC

M2112 M2113	6A @ 125V AC			\bullet
CSA for M2112 \& M2113: Only Synchronous Toggles \& Rockers				
M2B15 M2B25	1A @ 125V AC 1A @ 30V DC $0.4 V A ~ @ ~ 28 V ~ D C ~$	\bullet	\bullet	\bullet
M2T12	6A @ 125V AC	\bullet	\bullet	\bullet
M2T13	3A @ 250V AC	\bullet	\bullet	\bullet
M2T15	4A @ 30V DC	\bullet	\bullet	\bullet
M2T18		\bullet	\bullet	\bullet
M2T12		\bullet	\bullet	
M2T13		\bullet	\bullet	
M2T15	0.4 VA @ 28V DC	\bullet	\bullet	
M2T18		\bullet	\bullet	

Standards \& Approvals

See details regarding specific options in each switch section.

Standards \& Approvals

See details regarding specific options in each switch section.

Basic NKK Part No.	Rating Amps@Volts	UL	cULus	CSA
$\begin{aligned} & \mathrm{S} 821 \\ & \mathrm{~S} 822 \\ & \mathrm{~S} 823 \end{aligned}$	$\begin{aligned} & 30 \mathrm{~A} @ 125 \mathrm{~V} \text { AC } \\ & 30 \mathrm{~A} @ 250 \mathrm{~V} \text { AC } \end{aligned}$	-	\bullet	$\stackrel{\bullet}{\bullet}$
$\begin{aligned} & \text { S821D } \\ & \text { S822D } \\ & \text { S823D } \end{aligned}$	$\begin{gathered} \text { 30A @ 30V DC } \\ 15 \mathrm{~A} @ 125 \mathrm{~V} D C \end{gathered}$	\bullet	$\stackrel{\square}{\bullet}$	$\stackrel{\bullet}{\bullet}$
$\begin{aligned} & \mathrm{S} 831 \\ & \mathrm{~S} 832 \\ & \mathrm{~S} 833 \end{aligned}$	$\begin{aligned} & 30 \mathrm{~A} @ 125 \mathrm{~V} \text { AC } \\ & 30 \mathrm{~A} @ 250 \mathrm{~V} \text { AC } \end{aligned}$	\bullet	\bullet	\bullet
$\begin{aligned} & \text { S831D } \\ & \text { S832D } \\ & \text { S833D } \end{aligned}$	$\begin{gathered} \text { 30A @ 30V DC } \\ \text { 15A @ 125V DC } \end{gathered}$	\bullet	\bullet	$\stackrel{\rightharpoonup}{\bullet}$
SB25	$\begin{aligned} & \text { 15A @ } 125 \mathrm{~V} \text { AC } \\ & 9 \mathrm{~A} @ 250 \mathrm{~V} \text { AC } \end{aligned}$	-	-	-
SB61A	$\begin{aligned} & 10 \mathrm{~A} @ 125 \mathrm{~V} \text { AC } \\ & 5 \mathrm{~A} @ 250 \mathrm{VAC} \end{aligned}$	-	\bullet	
$\begin{aligned} & \text { SB221NC } \\ & \text { SB221TNC } \end{aligned}$	$\begin{gathered} 3 \mathrm{~A} @ 125 \mathrm{~V} \mathrm{AC} \\ 1.5 \mathrm{~A} @ 250 \mathrm{~V} \text { AC } \end{gathered}$	\bullet	-	\bullet
$\begin{aligned} & \text { SB221NO } \\ & \text { SB221TNO } \end{aligned}$	$\begin{aligned} & 3 \mathrm{~A} @ 125 \mathrm{~V} \text { AC } \\ & 1.5 \mathrm{~A} @ 250 \mathrm{~V} \text { AC } \end{aligned}$			
SB265	6A @ 125V AC 3A @ 250V AC	-	-	-
$\begin{aligned} & \text { SB4011NC } \\ & \text { SB4011NO } \end{aligned}$	$\begin{aligned} & 3 A @ 125 V A C \\ & 2 A @ 250 V A C \end{aligned}$	\bullet	\bullet	
$\begin{aligned} & \text { Low Security } \\ & \text { SK12AA } \\ & \text { SK12BA } \\ & \text { SK13DA } \\ & \text { SK13EA } \end{aligned}$	$\begin{aligned} & 3 A @ 125 V A C \\ & 1 A @ 250 V A C \end{aligned}$	$\stackrel{\bullet}{\bullet}$		-
Medium Security SK12AD SK12BD SK13ED	3A @ 125V AC	\bullet	\bullet	

$\left.\begin{array}{|l|c|c|c|c}\begin{array}{c}\text { Basic NKK } \\ \text { Part No. }\end{array} & \begin{array}{c}\text { Rating } \\ \text { Amps @Volts }\end{array} & \text { UL } & \text { cULus } & \text { CSA } \\ \hline \text { SW3001A } & \text { 15A @ 125V AC } & \bullet & & \\ \text { SW3002A } & \begin{array}{c}\text { 6A @ 250V AC } \\ \text { SW3003A }\end{array} & \bullet & & \\ \hline \text { SW3001A } & \text { 10A @ 125V AC (Inductive) }\end{array}\right)$

Standards \& Approvals

$\begin{aligned} & \mathrm{V}_{\mathrm{E}} \\ & \text { Models } \end{aligned}$	VDE Approved			V_{E}	VDE Approved		
	Approved Ratings	File or License Numbers	Marking on Case	Models	Approved Ratings	File or License Numbers	Marking on Case
JPL	$\begin{aligned} & \text { 8A/128A @ 250V AC } \\ & 16 \mathrm{~A} \text { (8A) @ 250V AC } \end{aligned}$	097579	Standard	JWS	5A (3A) @ 125/250V AC	119153	Standard
JPM	$\begin{aligned} & \text { 5A/80A @ 250V AC } \\ & 10 \mathrm{~A}(6 \mathrm{~A}) @ 250 \mathrm{~V} \text { AC } \end{aligned}$	113494	Standard	P	10A (6A) @ 125V AC 6A (6A) @ 250V AC	119174	Standard
JWL	$\begin{aligned} & \text { 8A/128A @ 250V AC } \\ & \text { 16A (8A) @ 250V AC } \end{aligned}$	115637	Standard	SW3006A	$\begin{aligned} & 20 \mathrm{~A} @ 125 \mathrm{~V} \text { AC } \\ & 10 \mathrm{~A} @ 250 \mathrm{AC} \end{aligned}$	119189	On Request
JWM	$\begin{aligned} & \text { 5A/80A @ 250V AC } \\ & 10 \mathrm{~A}(6 \mathrm{~A}) @ 250 \mathrm{~V} \text { AC } \end{aligned}$	115637	Standard	WR	15A (8A) @ 250V AC	126501	On Request

ISO (International Organization for Standardization)

ISO 9001

ISO 9000 is a set of international standards on quality management and quality assurance. It is not a set of product specifications but requirements for building a quality system with documented and repeatable procedures.

NKK has received the certificate of registration for the ISO 9001 standard, which is for business operations that design, produce, install, and service products.

ISO 14001

ISO 14000 is a new series of voluntary international standards governing environmental management. ISO 14001 is the first of some 20 standards to be developed.

NKK, being a corporation mindful of environmental concerns, has obtained a certificate of registration for ISO 14001. This standard seeks to balance socio-economic and business needs with support of environmental protection and pollution prevention within reach of businesses large and small.

IP Code for Degrees of Protection Provided by Enclosures

The IP code is part of the IEC60529 (International Organization for Standardization) standard recommending the degree of protection of enclosures for low-voltage switch gear; specifically, concerned with protection of persons against contact with live or moving parts and the prevention of ingress of solid foreign bodies and liquid.

The IP code is an industrial specification used internationally and is similar to the NEMA standard.

IP60 dust tight but not protected from water.
IP65 dust tight and protected against water jets.

IP67 dust tight and protected against effects of temporary immersion.

PLASTICS

Specific Name	Acronym or Abbreviation	Generic Name	
Acrylonitrile butadiene styrene	ABS	Shatterproof thermoplastic composed of styrene and acrylic resin; ABS provides resilience, shiny appearance, and stable base for metal plating	$\stackrel{\sim}{\sim}$
Carbon blended polyamide		Polyamide blended with carbon for antistatic property	-
Carbon composite polyacetal		Polyacetal	®
Diallyl phthalate	DAP	Diallyl phthalate; a thermosetting resin	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \frac{E}{E} \\ & \hline \end{aligned}$
Ethylene Propylene Terpolymer	EPT	Ozone resistant plastic	$\stackrel{\text { 上 }}{ }$
Glass fiber reinforced diallyl phthalate	GFR DAP	Diallyl phthalate	$\frac{0}{0}$
Glass fiber reinforced polyamide	GFR PA	Polyamide	-
Glass fiber reinforced polybutylene terephthalate	GFR PBT	Polyester	$\frac{\stackrel{\sim}{0}}{\stackrel{\circ}{\circ}}$
Liquid crystal polymer	LCP	Liquid crystal polymer	
Nitrile butadiene rubber	NBR	NBR; mainly used where oil-proof is required	.
Phenolic resin		Phenol plus aldehydes; used extensively as thermosetting plastic	\%
Polyacetal		Polyacetal	
Polyamide	PA	Nylon 6/6; Polyamide; always a nylon resin	$\stackrel{\text { ¢ }}{\stackrel{\circ}{\circ}}$
Polybutylene terephthalate	PBT	Polyester	
Polycarbonate	PC	Lexan; Polycarbonate; damaged by tricholoethylene solvent and so changes to polyamide	¢
Polyethylene	PE	Polyethylene	
Polyphenylene sulfide	PPS	Polyphenylene sulfide	$\stackrel{ \pm}{*}$
Polyoxymethylene	POM	Polyoxymethylene	
Polypropylene	PP	Polypropylene; more elastic than polycarbonate	$\stackrel{\square}{\square}$
Polyvinyl chloride	PVC	Polyvinyl chloride; loses pliability below $0^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right)$	\bigcirc
Resin		Polymer	$\stackrel{\square}{\circ}$
Silicone		Silicone	
ELEMENTS			-
Ag silver	Cr	chromium Pb lead	
Al aluminum	Cu	copper Sn tin	$Z \frac{\stackrel{\rightharpoonup}{0}}{\stackrel{\stackrel{\rightharpoonup}{0}}{\omega}}$
Au gold	Ni	nickel \quad Zn \quad zinc	
TCHES		www.nkk.com Z2	

A

AC	Alternating Current; electric current that continually reverses direction at a fixed frequency		
alloy	A metal created by combining two or more different metals to obtain a desired physical property		
Commonly describing pushbutton switches; remaining in a given circuit condition after removal of action actuating force; when actuating force is applied a second time, the opposite circuit is engaged; also known as push-push switching action; may or may not be latchdown			
ambient temperature	Operating temperature range		
range		\quad	Used with rockers and toggles to indicate total travel arc measured in degrees
:---			
angle of throw			
annealed			
ANSI			
copper is less brittle stress through the application of heat and gradual cooling; for example, annealed			

B

bifurcated contact A two-pronged, wiping movable contact	
bounce	The repeated rebounding of the movable contact during the transfer from one throw to the next; measured in milliseconds
brass	An alloy of zinc and copper
break before make Interrupting one circuit of a pole before completing another of the same pole (nonshorting contact)	

capacitive load A load in which the initial current on make is higher than steady state; upon break it is less than steady state. Current leads voltage in capacitive loads
clad The joining of two dissimilar materials by welding or bonding
cleaning
contact resistance
convection reflow Automated soldering of surface mount devices by running the PC board with the attached components through a soldering convection oven
coplanarity The profile of the surface tolerance establishes a tolerance zone defined by two parallel planes some distance apart within which all considered surfaces must lie

All other SMTs

creepage	The unwanted flow of electrical current from one conductive part to another	
CSA	Canadian Standards Association (1)	
cULus	Underwriters Laboratories Inc. - indicates compliance with both Canada and US requirements C^{2} US	¢
cycle	The complete sequence of indexing through all successive switch positions and returning to the original position	$\stackrel{\square}{\square}$
D		-
DC	Direct Current; electric current that flows only in one direction	®
detent	A mechanical positioning device for stopping actuator travel at each successive electrical circuit; for example, a spring-operated ball and groove	
dielectric strength	The ability of an insulating material to withstand high voltage without electrical degradation	$\stackrel{0}{\square}$
differential travel	The distance an actuator moves between the point where contacts snap over and where they snap back, or where a contact makes and then breaks	¢
DIP	Dual Inline Package, indicating . $100^{\prime \prime}$ center-to-center terminal spacing and .300" row-to-row spacing	$\stackrel{\square}{\square}$
double break	Having two pairs of contacts (shorting bar) that open the circuit at two places; having this added contact material improves heat dissipation and increases life; desirable in DC circuit applications	$\stackrel{\text { ® }}{\substack{\text { a }}}$
DP	Double Pole; see pole	\cdots
dry circuit	A low energy circuit condition where no arcing occurs during contact switching; for example, 0.4VA maximum @ 28 V AC/DC maximum; see logic level	운
DSP	National Defense Standards of Japan; NKK file numbers C 6310B \& C 6313	$\xrightarrow[\square]{\square}$
DT	Double Throw; see throw	
dust cover	Protects switch in an environment where small particles and dust exist; switch is operable with dust cover in place	
E		
environmentally sealed	Protected for use in harsh environments	$\stackrel{\text { F }}{ \pm}$
F		
flash plating	A very thin or "instant plating" of usually less than 10 microinches in thickness	
flow soldering	Automated soldering of through-hole devices on PC boards, also known as wave soldering	
flux	Chemical used for cleaning metal surfaces so that solder will flow out on the metal; fluxes change a passive, contaminated metal surface into an active, clean, solderable surface	
forward voltage $\left(V_{F}\right)$ G	The typical voltage drop across the LED at the typical forward current.	\%
gull wing	A type of surface mount terminal which extends from side of switch and has an L-shaped bend at the end	
	www.nkk.com Z25	

horsepower Horsepower, a unit of work, is often found as a rating on electrical motors. One horsepower is equal to 746 watts.
|

inductive load	A load in which the initial current on make is lower than steady state and upon break is greater than steady state. The long arcing time, due to stored energy in the inductor at the time of breaking, is severe on the switch contacts
IEC	International Electrotechnical Commission 3 Rue de Varembe P. O. Box 131 1211 Geneva 20, Switzerland
IECQ	IEC's Quality Assessment System for Electronic Components, created in 1983 to facilitate national and international trade in certified electronic components; a worldwide certification system which provides a method whereby electronic components made and handled by approved manufacturers and distributors can be used anywhere without further testing.
infrared reflow	A method of mass soldering surface mount devices with some form of infrared (IR) thermal radiation, such as a lamp IR system where PCB and components are heated largely by radiant energy from IR lamps
inrush	The initial, transitory high-level of current through contacts upon making (closing); can cause severe degradation of contacts; applicable to resistive and capacitive loads
insulation resistance	The electrical resistance between two normally insulated parts; measured at a specific high potential; usually greater than 1 megohm
IP	Ingress Protection (IP) rating system for definition of level of water and dust protection
ISO	ISO, International Standards Organization, is a network of the national standards institutes of 146 countries, on the basis of one member per country, with a Central Secretariat in Geneva, Switzerland, that coordinates the system
isolated lamp circuit	Independent of switching circuit; lamp is operated on a circuit separate from the switch circuit
J	
JEITA	Japan Electronics and Information Technology Industries Association
JETL	Japan Electrical Testing Laboratory
JIS	Japan Industrial Standard; Japan Industrial Standards Committee (JISC) Agency of Industrial Science and Technology

L
lamp load (tungsten) Most notably characterized by the high inrush current at make (approximately 10 to 16 times the steady state)
latchdown One type of alternate action in which the pushbutton is mechanically fastened in the down position; the pushbutton is at "normal" position for one circuit and latched down position for the other circuit condition

LED Light Emitting Diode; provides illumination with advantages of long life and low power consumption
logic level An application in which power levels do not cause arcing, melting, or softening of contacts; also referred to as dry circuit or low energy; specified 0.4 VA maximum @ 28 V AC/DC maximum; typically requiring gold contacts for reliability

low level	Devices that are used in a low level circuit (low voltage and low current) have not been tested by UL and/or CSA. When used as intended in a low level circuit, the results do not produce hazardous energy.
luminous intensity	The luminous intensity is the luminous flux emitted from a point per unit solid angle into a particular direction. Standard unit of luminous intensity is Candela (cd), also expressed as Lumen per Steradian (lm/sr).
M	

opaque	Condition that prevents the passage of light
overtravel	The distance an actuator moves beyond the point at which electrical contacts transfer

The distance an actuator moves beyond the point at which electrical contacts transfer

panel seal	Liquid is prevented from reaching the switch contacts from the front of the panel if the panel is subjected to spills or splashing
Printed Circuit Board; thin copper traces on a plastic laminate providing low cost, low current mass wiring	

R

Reliability Center for Electronic Components of Japan, member of EXACT (International Exchange of Authenticated Electronic Component Performance Test Data)

The easiest load to switch because current and voltage are in a steady state on make and drop instantly to zero on break; produces minimal arcing which maximizes contact life

Root Mean Square
Restriction of Hazardous Substances in Electrical and Electronic Equipment directive restricting the use of lead, cadmium, mercury, hexavalent chromium and PBB/PBDE flame retardant materials in electrical and electronic products sold in Europe beginning July 1, 2006

S

shorting contacts	Contacts which make before break
silicone rubber	Rubber made from silicone elastomers and noted for its retention of flexibility, resilience, and tensile strength over a wide temperature range

Terms \& Acronyms

SIP
snap action
splashproof

SPST
STC
surface mount SMD or SMT
synchronous lamp circuit

Single Inline Package, indicating $.100^{\prime \prime}$ center-to-center terminal spacing with terminals aligned in one row The abrupt transfer of contacts from one position to another; this action is relatively independent of the speed of actuator travel

Prevents entry of liquids at front panel generally by means of one or two internal o-rings, as illustrated here

Single Pole Single Throw; see pole, also throw

Sliding Twin Contact, a mechanism with two movable contact surfaces which pinch the stationary contacts. The STC contact mechanism provides smooth, positive detent actuation, unparalleled logic-level reliability, and more contact stability than conventional mechanisms. Continued reliability is assured since the gold-plated contacts are wiped clean with each actuation. Furthermore, if one side of the twin contacts should fail to conduct, the other side functions as a backup or a fail-safe path for the current. The combination of rounded movable and stationary contacts provides the smooth contact feel not found previously in sliding contact type mechanisms.

Component terminals are soldered to pads on the surface of the PC boards as opposed to using holes for mounting; terminal shapes vary - gull wing, J-bend, and others

Lamp is operated on a circuit in phase with the switch; the switch contains a separate circuit to open or close the lamp circuit simultaneously with the switching circuit

T

tactile feedback

The switching action felt by an operator
Designed to prevent tampering or provide evidence of tampering; impervious to tampering
Designed to make tampering difficult or resistive
The state of a component that is undergoing an excessive temperature change, particularly in reference to movement from one process to another in soldering and cleaning
thermoplastic
thermoset
throw
A plastic which is flexible and easily molded when heated and which becomes hard and regid when cooled A plastic which becomes hard and rigid when heated or cured

The number of electrical circuits within a pole

Sum of pretravel and overtravel; full distance an actuator moves from relaxed position past the point of electrical contact and to the end of travel

Transmitting and diffusing light so that objects beyond cannot be seen clearly
Transmitting light without appreciably scattering so that objects lying beyond are entirely visible
travel
The distance the actuator moves to effect the change of electrical circuits; see also differential travel, pretravel, overtravel, and total travel

Circuit in which one circuit is completed in one position and another separate circuit is completed in the other position

typical forward current (I_{F})

The test condition at $25^{\circ} \mathrm{C}$. It is recommended that the current be at or below the Typical Forward Current.

U

UL Underwriters Laboratories Inc.; many of NKK's switches are UL Recognized
undercoating A coating used for preparation of a surface for plating or used to prevent corrosion when the finish plating develops pinholes; thickness of an undercoating is determined by its purpose

V

vapor phase A process well-suited to soldering surface mount devices; it combines infrared preheating with condensation heating for reflow, advantageous for eliminating overheating of components and PCB

VDE
Verband Deutscher Elektrotechniker of Germany
 W

watertight	Impermeable to water except when subjected to immersion; not waterproof wavelengthThe color of visable light is measured by its wavelength. The Greek symbol "lambda" is used to represent wavelength, the unit of measure is nm.
wave soldering \quadA method of soldering in which a wave of molten solder contacts surfaces as the PC board with components is conveyed through the process; wave width, travel speed, dwell time, etc. are varied to achieve desired results	
WEEEWaste Electrical and Electronic Equipment Directive aims at prevention of WEEE and its reuse, recycling and recovery, so as to reduce the disposal of this type of waste. The directive sets targets for the separate collection of WEEE, along with standards for treatment and targets for recycling and recovery.	
wiping action	Sliding of contacts over one another resulting in cleaning of the surfaces

FEDERAL SUPPLY CODE

NKK Switches has been assigned the FSC Number 63426 and is classified as a
Commercial and Governmental Entity (CAGE)
by the Defense Logistics Agency
in Battle Creek, Michigan.

Product Overview
Ultra-Miniature \& Subminiature

Specialty

Index by Model Number

modi pageno.	moon	page no.	moel	Page no.	moost Page no.
(tale	(mel		Mepor		
Citatis	,		coick		
为	, mexm		,		
Asicos	mss	cosis			
(ex	K001	Nor	Menas		${ }^{\text {M2IT } 21}$
cose			N0238	${ }_{\text {a }}$	
${ }_{\text {cle }}$	${ }_{\substack{\text { ras } \\ \text { cos }}}^{\text {coid }}$		Me02		m219 A2298
${ }_{\text {ctac }}^{6}$	${ }_{\substack{\text { k,15 } \\ \text { kelf }}}$		cose		
		${ }^{\text {din }}$	Mindic		
			${ }_{\text {moin }}$	${ }_{\text {cose }}^{6}$	
cismile		Mille		coict	
frol	${ }^{1815}$	${ }^{204656}$	M0227	${ }^{8,2929}$	
		(itisisi		${ }_{6}^{629} 9$	(ex
			cimbir		
${ }^{115}$			m20	${ }_{82} 829$	
				旡	
${ }_{6689}$	wwoziA	${ }^{8061}$	cen		
		cisisise	${ }_{\text {mpan }}^{\text {moar }}$	cita	
			cil		Mumole
cole			coick		
come				cital	Mex
W1					(exmex

Index by Model Number

